124 research outputs found

    What Cannot be Learned with Bethe Approximations

    Full text link
    We address the problem of learning the parameters in graphical models when inference is intractable. A common strategy in this case is to replace the partition function with its Bethe approximation. We show that there exists a regime of empirical marginals where such Bethe learning will fail. By failure we mean that the empirical marginals cannot be recovered from the approximated maximum likelihood parameters (i.e., moment matching is not achieved). We provide several conditions on empirical marginals that yield outer and inner bounds on the set of Bethe learnable marginals. An interesting implication of our results is that there exists a large class of marginals that cannot be obtained as stable fixed points of belief propagation. Taken together our results provide a novel approach to analyzing learning with Bethe approximations and highlight when it can be expected to work or fail

    Globally Optimal Gradient Descent for a ConvNet with Gaussian Inputs

    Full text link
    Deep learning models are often successfully trained using gradient descent, despite the worst case hardness of the underlying non-convex optimization problem. The key question is then under what conditions can one prove that optimization will succeed. Here we provide a strong result of this kind. We consider a neural net with one hidden layer and a convolutional structure with no overlap and a ReLU activation function. For this architecture we show that learning is NP-complete in the general case, but that when the input distribution is Gaussian, gradient descent converges to the global optimum in polynomial time. To the best of our knowledge, this is the first global optimality guarantee of gradient descent on a convolutional neural network with ReLU activations

    Semi-Supervised Learning with Competitive Infection Models

    Full text link
    The goal in semi-supervised learning is to effectively combine labeled and unlabeled data. One way to do this is by encouraging smoothness across edges in a graph whose nodes correspond to input examples. In many graph-based methods, labels can be thought of as propagating over the graph, where the underlying propagation mechanism is based on random walks or on averaging dynamics. While theoretically elegant, these dynamics suffer from several drawbacks which can hurt predictive performance. Our goal in this work is to explore alternative mechanisms for propagating labels. In particular, we propose a method based on dynamic infection processes, where unlabeled nodes can be "infected" with the label of their already infected neighbors. Our algorithm is efficient and scalable, and an analysis of the underlying optimization objective reveals a surprising relation to other Laplacian approaches. We conclude with a thorough set of experiments across multiple benchmarks and various learning settings

    Gaussian Robust Classification

    Full text link
    Supervised learning is all about the ability to generalize knowledge. Specifically, the goal of the learning is to train a classifier using training data, in such a way that it will be capable of classifying new unseen data correctly. In order to acheive this goal, it is important to carefully design the learner, so it will not overfit the training data. The later can is done usually by adding a regularization term. The statistical learning theory explains the success of this method by claiming that it restricts the complexity of the learned model. This explanation, however, is rather abstract and does not have a geometric intuition. The generalization error of a classifier may be thought of as correlated with its robustness to perturbations of the data: a classifier that copes with disturbance is expected to generalize well. Indeed, Xu et al. [2009] have shown that the SVM formulation is equivalent to a robust optimization (RO) formulation, in which an adversary displaces the training and testing points within a ball of pre-determined radius. In this work we explore a different kind of robustness, namely changing each data point with a Gaussian cloud centered at the sample. Loss is evaluated as the expectation of an underlying loss function on the cloud. This setup fits the fact that in many applications, the data is sampled along with noise. We develop an RO framework, in which the adversary chooses the covariance of the noise. In our algorithm named GURU, the tuning parameter is a spectral bound on the noise, thus it can be estimated using physical or applicative considerations. Our experiments show that this framework performs as well as SVM and even slightly better in some cases. Generalizations for Mercer kernels and for the multiclass case are presented as well. We also show that our framework may be further generalized, using the technique of convex perspective functions.Comment: Master's dissertation of the first author, carried out under the supervision of the second autho

    Optimal Tagging with Markov Chain Optimization

    Full text link
    Many information systems use tags and keywords to describe and annotate content. These allow for efficient organization and categorization of items, as well as facilitate relevant search queries. As such, the selected set of tags for an item can have a considerable effect on the volume of traffic that eventually reaches an item. In settings where tags are chosen by an item's creator, who in turn is interested in maximizing traffic, a principled approach for choosing tags can prove valuable. In this paper we introduce the problem of optimal tagging, where the task is to choose a subset of tags for a new item such that the probability of a browsing user reaching that item is maximized. We formulate the problem by modeling traffic using a Markov chain, and asking how transitions in this chain should be modified to maximize traffic into a certain state of interest. The resulting optimization problem involves maximizing a certain function over subsets, under a cardinality constraint. We show that the optimization problem is NP-hard, but nonetheless has a simple (1-1/e)-approximation via a simple greedy algorithm. Furthermore, the structure of the problem allows for an efficient implementation of the greedy step.To demonstrate the effectiveness of our method, we perform experiments on three tagging datasets, and show that the greedy algorithm outperforms other baselines

    Robust Conditional Probabilities

    Full text link
    Conditional probabilities are a core concept in machine learning. For example, optimal prediction of a label YY given an input XX corresponds to maximizing the conditional probability of YY given XX. A common approach to inference tasks is learning a model of conditional probabilities. However, these models are often based on strong assumptions (e.g., log-linear models), and hence their estimate of conditional probabilities is not robust and is highly dependent on the validity of their assumptions. Here we propose a framework for reasoning about conditional probabilities without assuming anything about the underlying distributions, except knowledge of their second order marginals, which can be estimated from data. We show how this setting leads to guaranteed bounds on conditional probabilities, which can be calculated efficiently in a variety of settings, including structured-prediction. Finally, we apply them to semi-supervised deep learning, obtaining results competitive with variational autoencoders.Comment: 24 pages, 1 figur

    Learning Infinite-Layer Networks: Without the Kernel Trick

    Full text link
    Infinite--Layer Networks (ILN) have recently been proposed as an architecture that mimics neural networks while enjoying some of the advantages of kernel methods. ILN are networks that integrate over infinitely many nodes within a single hidden layer. It has been demonstrated by several authors that the problem of learning ILN can be reduced to the kernel trick, implying that whenever a certain integral can be computed analytically they are efficiently learnable. In this work we give an online algorithm for ILN, which avoids the kernel trick assumption. More generally and of independent interest, we show that kernel methods in general can be exploited even when the kernel cannot be efficiently computed but can only be estimated via sampling. We provide a regret analysis for our algorithm, showing that it matches the sample complexity of methods which have access to kernel values. Thus, our method is the first to demonstrate that the kernel trick is not necessary as such, and random features suffice to obtain comparable performance

    Sufficient Dimensionality Reduction with Irrelevant Statistics

    Full text link
    The problem of finding a reduced dimensionality representation of categorical variables while preserving their most relevant characteristics is fundamental for the analysis of complex data. Specifically, given a co-occurrence matrix of two variables, one often seeks a compact representation of one variable which preserves information about the other variable. We have recently introduced ``Sufficient Dimensionality Reduction' [GT-2003], a method that extracts continuous reduced dimensional features whose measurements (i.e., expectation values) capture maximal mutual information among the variables. However, such measurements often capture information that is irrelevant for a given task. Widely known examples are illumination conditions, which are irrelevant as features for face recognition, writing style which is irrelevant as a feature for content classification, and intonation which is irrelevant as a feature for speech recognition. Such irrelevance cannot be deduced apriori, since it depends on the details of the task, and is thus inherently ill defined in the purely unsupervised case. Separating relevant from irrelevant features can be achieved using additional side data that contains such irrelevant structures. This approach was taken in [CT-2002], extending the information bottleneck method, which uses clustering to compress the data. Here we use this side-information framework to identify features whose measurements are maximally informative for the original data set, but carry as little information as possible on a side data set. In statistical terms this can be understood as extracting statistics which are maximally sufficient for the original dataset, while simultaneously maximally ancillary for the side dataset. We formulate this tradeoff as a constrained optimization problem and characterize its solutions. We then derive a gradient descent algorithm for this problem, which is based on the Generalized Iterative Scaling method for finding maximum entropy distributions. The method is demonstrated on synthetic data, as well as on real face recognition datasets, and is shown to outperform standard methods such as oriented PCA.Comment: Appears in Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI2003

    Tight Error Bounds for Structured Prediction

    Full text link
    Structured prediction tasks in machine learning involve the simultaneous prediction of multiple labels. This is typically done by maximizing a score function on the space of labels, which decomposes as a sum of pairwise elements, each depending on two specific labels. Intuitively, the more pairwise terms are used, the better the expected accuracy. However, there is currently no theoretical account of this intuition. This paper takes a significant step in this direction. We formulate the problem as classifying the vertices of a known graph G=(V,E)G=(V,E), where the vertices and edges of the graph are labelled and correlate semi-randomly with the ground truth. We show that the prospects for achieving low expected Hamming error depend on the structure of the graph GG in interesting ways. For example, if GG is a very poor expander, like a path, then large expected Hamming error is inevitable. Our main positive result shows that, for a wide class of graphs including 2D grid graphs common in machine vision applications, there is a polynomial-time algorithm with small and information-theoretically near-optimal expected error. Our results provide a first step toward a theoretical justification for the empirical success of the efficient approximate inference algorithms that are used for structured prediction in models where exact inference is intractable

    Learning Rules-First Classifiers

    Full text link
    Complex classifiers may exhibit "embarassing" failures in cases where humans can easily provide a justified classification. Avoiding such failures is obviously of key importance. In this work, we focus on one such setting, where a label is perfectly predictable if the input contains certain features, or rules, and otherwise it is predictable by a linear classifier. We define a hypothesis class that captures this notion and determine its sample complexity. We also give evidence that efficient algorithms cannot achieve this sample complexity. We then derive a simple and efficient algorithm and show that its sample complexity is close to optimal, among efficient algorithms. Experiments on synthetic and sentiment analysis data demonstrate the efficacy of the method, both in terms of accuracy and interpretability
    • …
    corecore